
CS 6200 Information Retrieval Final Project
Report

Spring 2019 —Professor Rukmini Vijaykumar

Brian Desnoyers
Khoury College of Computer Sciences

Northeastern University
Boston, MA, U.S.A.
bdesnoy@ccs.neu.edu

John Goodacre
Khoury College of Computer Sciences

Northeastern University
Boston, MA, U.S.A.

goodacre.j@husky.neu.edu

Akshay Kulkarni
Khoury College of Computer Sciences

Northeastern University
Boston, MA, U.S.A.

kulkarni.akshay@husky.neu.edu

I. INTRODUCTION

This project explores the development and evaluation
of several search engines for a provided test collection of
scholarly journal abstracts. Baseline systems were improved
via query enhancement techniques, such as word embedding
query expansion and stemming. A snippet generation and
spelling error correction model were also developed to
improve the baseline retrieval systems.

Team member contributions (in addition to the homework
retrieval models) are listed below:

• Brian Desnoyers
– Baseline Query Likelihood Model (JM smoothed)
– Baseline Query Likelihood Model (Dirichlet

Smoothed)
– Word Embedding-Based Query Expansion
– Task 3- Stopping and Stemming
– Snippet Generation and Query Term Highlighting
– Phase 3- Evaluation
– Relevant Sections of Readme Documentation
– Relevant Sections of Final Report

• John Goodacre
– Task 3- Stopping
– Relevant Sections of Readme Documentation
– Relevant Sections of Final Report

• Akshay Kulkarni
– Vector-Space Term Frequency–Inverse Document

Frequency model
– Rocchio Algorithm for Relevance Feedback w/

Vector-Space Model
– Relevant Sections of Readme Documentation
– Relevant Sections of Final Report

II. BACKGROUND

A. Dataset

This project utilizes a dataset consisting of 3024 abstracts
from the Communications of the ACM (CACM) published

between 1958 and 1979 [1]. In addition, the DBLP Computer
Science Bibliography was utilized for generating models used
for query expansion. This database is a collection citation
information from computer science journal articles [2].

B. Baseline Models

This project involves the development of several information
retrieval systems, with an evaluation and comparison of their
performance in terms of retrieval effectiveness. This involves
four baseline models.

The first baseline model is a Best Matching 25 (BM25)
ranking [3], which expands the binary independence model
to incorporate term weights for both queries and documents.
This method attempts to estimate the probability that a
particular document is relevant, assuming that terms are
independent given document relevance [4], similar to a Naı̈ve
Bayes classifier. The BM25 algorithm can also be used in
the absence of relevance information, however. The BM25
ranking algorithm is thus a probabilistic model.

The second and third baseline models are both query
likelihood models which compute the probability of a query
based on the language model for each document. These
models use simple unigram language models for each
document. Because it is unlikely that all relevant documents
will contain the query terms, in order for their language
models to generate those terms, smoothing must be used. One
of these models uses Jelinek-Mercer (JM) smoothing, which
uses a probability from a collection-wide language model to
adjust the probability citecroftsearch. The weight of this term
is adjusted by a parameter λ, which increases the smoothing
effect. Thus small values, such as 0.1 tend to work well for
shorter queries, while larger values, such as 0.7 tend to work
better for longer queries [1]. The other model uses Dirichlet
Smoothing /citecroftsearch. which instead uses a parameter
µ, which increases the weighting of documents with more
matching terms [1]. Dirichlet Smoothing typically performs
better than JM smoothing on smaller queries, and typical



values for µ are between 1000 and 2000.

The fourth (an extra) baseline model is a term
frequency–inverse document frequency (tf-idf) vector
space model [5]. This model involves computing distances
between document and query vectors, through metrics such
as cosine distance, which was utilized for this project. These
vectors are computed based on the tf-idf values for each
term within the vocabulary, which is product of the term
frequency within the document and the reciprocal document
frequency of the term [5]. The Tf-Idf Vector Space model has
been implemented by computing ranking scores based on dot
product of cosine weights of tf-idf vectors computed from a
document index, In order to reduce the impact of frequent
terms, log transformation with laplace smoothing was applied
to raw term frequencies. Additionally Rocchio relevance
feedback method (Rocchio’s algorithm) was incorporated
into the Vector Space model as a query modification method
using the relevance information provided, which transforms
the query term weights in the query vector by adding a
component based on the average of weights in the relevant
documents and negating by a component based on the average
weight in the non-relevant documents.

The final baseline model is Lucene, which is an open-
source indexing and searching tool [6], and is used within
common search engine implementations, such as Apache
Solr [7] and Elasticsearch [8]. Lucene uses its own scoring
function which is based on tf-idf [6].

C. Query Enhancement

1) Query Expansion: Query expansion is a method used to
improve retrieval system performance and relevance by adding
additional terms to a query [9]. Several methods for query ex-
pansion exist, including pseudo-relevance feedback and word
embedding-based query expansion. Pseudo-relevance feedback
uses highly ranked documents to select new terms for query
expansion and has been shown to be effective both with and
without improvements, such as a term proximity heuristic
for selecting expansion terms near query terms [10]. Another
modern query expansion technique involves the use of word
embeddings, which are commonly used in natural language
processing. Word embeddings map co-occurance information
to a lower dimensional space, often using a skip-gram or
continuous bag of words model. Query expansion terms can
be identified by finding nearest neighbors to query terms via
these models [11].

2) Stopping: Stopping is a technique used to filter out
specific words, known as stop words. Ideally these stop words
will be common across many documents in the collection and
thus have limited semantic meaning or impact on document
relevance. Words might carry little meaning from a frequency
(or information theoretic) point of view, or alternatively from
a conceptual (or linguistic) point of view. Words that occur in
many of the documents in the collection carry little mean-
ing from a frequency point of view, because a search for

documents that contain that word will retrieve many of the
documents in the collection. By removing the very frequent
words, the document rankings will not be affected that much.
While these stop words can be removed at index time, but
are often used only at query time as this allows for more
flexibility during search. Stop word removal on the basis of
frequency can be done easily by removing the words with the
highest frequencies in the document collection. As a result of
stopping the most 200-300 frequent words, indexes may be
between 30% and 50% smaller [12].

3) Stemming: Stemming is the process of reducing all
words with the same root (or, if prefixes are left untouched,
the same stem) to a common form, usually by stripping each
word of its derivational and inflectional suffixes. There are
various stemming strategies developed for different purposes
[13]. Some stemming algorithms utilize a stem dictionary
and others a suffix list. Many stemming algorithms, designed
to improve IR performance and document relevance, do not
use a stem dictionary, but an explicit list of suffixes, and
the criteria for removing suffixes. Stemmers of the popular
stemmer family, the Porter stemmers, have adopted this
approach [14].

D. Snippet Generation and Highlighting

A classical approach for snippet generation is extractive
summarization using an extension of Luhn’s Algorithm [15].
This algorithm involves the identification of key phrases within
sentences containing query terms. The query terms identified
within these key phrases can be highlighted to the user via the
search engine interface.

III. IMPLEMENTATION AND DISCUSSION

A. Baseline Model Implementation

The baseline models will be implemented in Python. The
tf-idf vector space model was implemented by computing
ranking scores based on cosine distance of tf-idf vectors com-
puted based on a document index. This utilized a vocabulary
generated from the index, with Laplace smoothing. Similarly,
the query liklihood and BM25 baselines were implemented in
Python. The final Lucene-based model was developed using
PyLucene [16].

B. Query Enhancement

Query expansion was performed via pseudo-relevance
feedback and Word2vec-trained [17] word embeddings. For
pseudo-relevance feedback, 6 query terms were selected based
on the 10 top ranked documents to find the expansion terms.
Due to the limited size of the training set, a set of word
embeddings from about three million article titles from the
DBLP Computer Science Bibliography. This utilized a con-
tinuous bag of words model with a vector size of 100 and
window size of 10 for use during training, as these are common
parameters for these purposes [18]. The Gensim library was
used to perform initial processing of these word embeddings



[19]. Stopping utilized the provided project stop list. Stemming
utilized the provided query and document files.

C. Snippet Generation and Highlighting
Snippet generation was performed via extractive summariza-

tion using an extension of Luhn’s Algorithm. Sentences were
ranked based on a computed significance factor, which is the
number of query terms within the key phrase divided by the
total number of words in the key phrase. Initial query terms
were extracted and highlighted within the terminal output
(\033[1m term \033[0m).

D. Combining Approaches
To combine approaches, a final run was performed that

combines stopping with the word embedding query expansion
technique.

E. Extra Credit
A spelling error interface was implemented. This interface

used a unigram language model trained via the dataset which
was used in conjunction with a noisy channel model to provide
up to 6 suggestions with the highest probability for each query
word not in the index. As shown in Figure 1, this spelling
corrector also found similar words such as singular/plural
forms when one wasn’t in the index.

F. Query-by-Query Analysis
Looking at, for example, the query ”What articles exist

which deal with TSS (Time Sharing System), an operating
system for IBM computers?,” the top result for BM25 and the
QLM discuss storage structures which is not relevant. The top
document for the Lucene model discusses a computer sharing
system. This result occurs even when stopping is applied
to the BM25 model. When stopping is added to Lucene,
however, the first result is about a time sharing system. In
this single query-by-query example, the stopping seems to
have a more positive impact on the Lucene model. This is
discussed and analyzed in more detail across the dataset using
evaluation metrics as described in the Results section of this
document.

Query-by-query analysis for the stemming results is included
in the Results section of this document.

IV. RESULTS

The summary of results across all runs is shown in Table
2. This includes mean average precision (MAP), mean recip-
rocal rank (MRR), precision at k for k = 5 and k = 20
(P@5, P@20), overall precision (for all 100 documents), and
overall recall (for all 100 documents). Complete query-by-
query results are included with this submission as described
in Readme.txt (files named results_*.txt). Simi-
larly, full tables for all evaluation metrics are included with
this submission as described in Readme.txt (files named
eval_*.txt). For the stopping there was 77.4% overlap for
the BM25 results and 84.9% overlap for the Lucene results.

Results are interpreted within the Conclusion section of this
document.

A. Stemming Results

While the stemming results could not be directly compared,
they yielded highly similar results that appeared to be relevant
qualitatively. For example, for the first query, ”portabl oper
system,” the top results from both systems were extremely
similar, which was not the case for results from the previous
runs. This is likely not only due to the stemming, but also
because of the fact that the queries used for the stemming
sources were much more succinct. This demonstrates that
many of the models used, specifically the BM25 and standard
Lucene models, may work better for concise keyword queries,
rather than prose. Similar results occurred for the second query
”code optim for space effici”, and the top hits referring to space
efficient code, such as the top result about indirect threaded
code (CACM-2748.html).

V. CONCLUSION

From these result tables, it is clear that the TF-IDF model
using Rocchio relevance feedback performed best, however, it
should be noted that it had ground-truth relevance information
available. This therefore likely artificially inflated the results,
as seen by the mean reciprocal rank value of 1.0. While the
standard TF-IDF vector space model performed very well in
comparison to other systems (e.g. its MAP was similar to
the BM25 algorithm after stopping), its efficiency made its
use significantly less desirable. One area for future work is
to improve the tf-idf vector space model as it had limited
performance during this assignment, taking almost an hour to
run through all the queries.

These tables also show that the impacts of enhancements,
such as query expansion, may have been limited by the
non-succinctness of the queries used. While results during
expansion, especially for the word embedding-based query
expansion, were able to find similar terms (e.g. system to
systems), they also found synonyms for non-stopwords that
should be removed. As a result, these measures appeared to
only moderately improve performance.

Despite the traditional improvement of Dirichlet smoothing
over JM smoothing for a query likelihood model [1], the
JM smoothed model appeared to significantly outperform the
other model, likely due to the length of the queries [1].

Similarly the BM25 model seemed to slightly perform
the Lucene-based model based on its MAP, MRR, and P@5
values.

REFERENCES

[1] B. Croft, D. Metzler, and T. Strohman, “Search engines: Information
retrieval in practice, 2008.”

[2] M. Ley, “The dblp computer science bibliography: Evolution, research
issues, perspectives,” in International symposium on string processing
and information retrieval. Springer, 2002, pp. 1–10.

[3] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, M. Gat-
ford et al., “Okapi at trec-3,” Nist Special Publication Sp, vol. 109, p.
109, 1995.



Fig. 1. An example suggestion from the spelling corrector. In this example, since query expansion was not used, a suggestion was made to change a plural
form to the singlular.

[4] C. T. Yu and G. Salton, “Precision weighting-an effective automatic
indexing method,” Cornell University, Tech. Rep., 1975.

[5] G. Salton and C. Buckley, “Term-weighting approaches in automatic
text retrieval,” Information processing & management, vol. 24, no. 5,
pp. 513–523, 1988.

[6] A. Białecki, R. Muir, G. Ingersoll, and L. Imagination, “Apache lucene
4,” in SIGIR 2012 wWrkshop on Open Source Information Retrieval,
2012, p. 17.

[7] T. Grainger and T. Potter, Solr in Action, 1st ed. Greenwich, CT, USA:
Manning Publications Co., 2014.

[8] M. S. Divya and S. K. Goyal, “Elasticsearch: An advanced and quick
search technique to handle voluminous data,” Compusoft, vol. 2, no. 6,
p. 171, 2013.

[9] E. N. Efthimiadis, “Query expansion.” Annual review of information
science and technology (ARIST), vol. 31, pp. 121–87, 1996.

[10] Y. Lv and C. Zhai, “Positional relevance model for pseudo-
relevance feedback,” in Proceedings of the 33rd International
ACM SIGIR Conference on Research and Development
in Information Retrieval, ser. SIGIR ’10. New York,
NY, USA: ACM, 2010, pp. 579–586. [Online]. Available:
http://doi.acm.org.libproxy.mit.edu/10.1145/1835449.1835546

[11] F. Diaz, B. Mitra, and N. Craswell, “Query expansion with locally-
trained word embeddings,” arXiv preprint arXiv:1605.07891, 2016.

[12] D. Hiemstra and F. de Jong, “Statistical language models and informa-
tion retrieval: natural language processing really meets retrieval.” 2001.

[13] J. B. Lovins, “Development of a stemming algorithm,” Mech. Translat.
& Comp. Linguistics, vol. 11, pp. 22–31, 1968.

[14] E. Airio, “Word normalization and decompounding in mono-and bilin-
gual ir,” Information Retrieval, vol. 9, no. 3, pp. 249–271, 2006.

[15] H. P. Luhn, “The automatic creation of literature abstracts,” IBM Journal
of research and development, vol. 2, no. 2, pp. 159–165, 1958.

[16] A. Vajda, “Pulling java lucene into python: Pylucene,” Retrieved March,
vol. 23, p. 2008, 2005.

[17] T. Mikolov, K. Chen, G. S. Corrado, and J. A. Dean, “Computing
numeric representations of words in a high-dimensional space,” May 19
2015, uS Patent 9,037,464.

[18] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[19] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling
with Large Corpora,” in Proceedings of the LREC 2010 Workshop on



Fig. 2. A summary of the result table across all main runs.

New Challenges for NLP Frameworks. Valletta, Malta: ELRA, May
2010, pp. 45–50, http://is.muni.cz/publication/884893/en.


