Matrix Factorization with Alternating Least Squares

Project Overview:

Ever since Netflix released it Netflix Prize open competition in 2009, popularity and interest in collaborative
filtering/recommendation systems has grown among the software engineering and data science community.
Our project attempts to analyze the Netflix dataset in a distributed manner in an effort to make predictions on
how much a user will enjoy a particular movie based on their movie preferences, or known information about
the user. From a high level, this requires taking in a very large dataset that represents a sparse matrix of users by
movies where each cell value in the ratings matrix represents the rating given by the user. To produce the
predictions, this requires us to first decompose the ratings matrix into two smaller matrices (P and Q) using
matrix factorization. Choosing the ideal factor matrices involves using the cost function Alternating Least
Squares (ALS) which iteratively alternates between a fixed matrix P/Q to calculate the values for the other
corresponding matrix P/Q, in an effort to find the ideal configuration of two matrices that minimises the error
of the cost function or until the cost converges to an acceptable threshold. Once these two matrices are found,
we can simply perform matrix multiplication to generate a new ratings dense matrix with all ratings filled in,
including the newly predicted ratings.

Input Data
hetps://www.kaggle.com/netflix-inc/netflix-prize-data

The data is comprised of the following:

® Movie IDs range from 1 to 17,770 sequentially.
e Customer IDs range from 1 to 2,649,429, with gaps. There are 480,189 users.
e Ratings are on a five star (integral) scale from 1 to 5.

With the help of some preprocessing done in Python on the original datasets, we have created the following
input data where each line read in represents a cell (or rating) in the sparse rating matrix.

Example of input data:

user,movie,rating
1,29,3

1,156,2

1,172,4

1,174,5

2,29,4

2,172,3

3,156,3

3,172,4

3,57,5

https://www.kaggle.com/netflix-inc/netflix-prize-data

4,294
4,156,5
4,172,3
4,174,1
4572

Algorithm and Program Analysis

The Alternating Least Squares (ALS) approach is a gradient descent algorithm that decomposes a given large
user/item matrix R into lower k-dimensional user factor matrix P and an item factor matrix Q. In the most
simple approach you can then estimate the user rating (or in general preference) by computing the inner (dot)
product for the corresponding user and item vectors in the factor matrices. ALS represents a different approach
to optimizing the loss function.

The key insight while computing the factors is that you can turn the non-convex optimization problem into an
"easy” quadratic problem. By holding P or Q constant the problem can be turned into the Ordinary Least
Squares problem which has a unique and guaranteed global minimum. In ALS we fix each one of the factor
matrices alternatively and use the closed form solution to compute a new factor matrix that minimizes the cost
function. When one is fixed, the other one is computed, and vice versa. This is iteratively continued until you
reach a set of P and Q matrices that meet the convergence criteria (i.e the iterations terminate once we reach an
acceptable delta of error).

ALS Algorithm
We perform Alternating Least Squares algorithm as follows:

1. Partition the Ratings matrix by userID to create R, and similarly partition Ratings by ItemID to
create R (so there are two copies of Ratings with different partitionings). In R, all ratings by the same
user are on the same machine, and in R, all ratings for same item are on the same machine.

2. With k factors and ratings matrix R, create matrices P, and Q, ,(Figure 1). Then randomly assign

values to Q as the starting point.
P
R
k
u
u — >
Q
k
i
i
Figure 1

3. Broadcast the current P and Q matrices to each partition.

4. Using R row r_ and Q columns q (corresponding to non-empty columns in r), use equation [2] to
compute the update of p, locally on each machine, where p, is a column belonging to the P matrix (see
Figure 2).

5. Using R row r, and P columns p, (corresponding to non-empty columns in r;), use equation [3] to
compute the update of q; locally on each machine, where q; is a column belonging to the Q matrix.

6. Compute the least squares error by taking the summation of all differences between each r'; (equal to
p,'-q;), and the corresponding non-empty value in R, using the cost function [1].

7. Repeat steps 3-7 and compute difference to minimize the least squares error of the observed ratings

until convergence.

1 2 3 1 2 3 1 2 3
Ru 1 5 - 07 | 04 | 06 0.2 | 05
02 | 05| 03 04 | 06
0.2 * 02 | 04 A=01 5 % | 02
0.4 0.1 0 0.4
P, = + + * +
0 0.1

0.14 | 0.29 22
H *

0.29 | 0.66 4.8

1.70

3.81

Figure 2

Algorithm - Key Formulas

Cost Function (includes L2 regularization)

min(P,0) = % (ry;=pia) +ME bl + gl 11

Foi obs

Update formula for factor matrix p (users)
-1

=0 2 qiqu'_"Mk) * 2 ryd; (2]

T € Tu T € Tu

Update formula for factor matrix q (items)
-1

;= X piput M) = X r.p, [3]

Tui 8 T Fi® T

Pseudocode

var Q = DenseMatrix.fill(nFactors, sortedItems.length)(minRating + rand.nextDouble()
* (maxRating - minRating) + 1)

var q_bdcast = sc.broadcast(Q)

val tolerance = 0.0
val lambda = 0.1
val convergencelterations = 100

while(costDiff >= tolerance && qiterations < convergenceIlterations) {

// Step to calculate New P

// Calculates gradient for new P in RDD form

val newP = R_u.groupByKey ()
.mapValues(row => computeGradient(row,q_bdcast,lambda))
.collect()

// converts newP to a new dense matrix P
var P = DenseMatrix(newP.map(_.toArray):_x).t

// Rebroadcast P
p_bdcast = sc.broadcast(P)

// calculates gradient for new Q in RDD form

val newQ = R_i.groupByKey ()
.mapValues(row => computeGradient(row,p_bdcast,lambda))
.collect()

// converts newQ to a new dense matrix Q
var Q = DenseMatrix(newQ.map(_.toArray):_x).t

// Rebroadcast Q
g_bdcast = sc.broadcast(Q)

residual = 0

// #### Step to compute cost ####
R_u.foreach{ case (userId, (movieId, r_ij)) =>
val q_i = Q(::, movield.toInt)
val p_u = P(::, userId.toInt)
residual += math.pow(r_ij - (p_u.t * q_1i), 2)
}

// Computes norms for each latent matrix
val pu_norm = sum(sum(P *:x P, Axis._0))
val gi_norm = sum(sum(Q *:*x Q, Axis._0))

// Computes total cost function for iteration
totalCost = residual + (lambda * (pu_norm + qi_norm))

// Computes deltas between previous cost and current cost
costDiff = math.abs(totalCost - prevCost)

logger.info("Iter: " + -dterations + " Cost: " + totalCost + " Delta: " + costDiff)

prevCost = totalCost

iterations += 1

}

Data Analysis

Total Input Total (Possible) Output Volume

[uk| + |i*k]|
IR|
(480,189 k) + (17,770 * k) =
(100+ million ratings) 497,959*k values

where k is a hyperparameter corresponding to the
number of latent factors

Experiments

The matrix factorization program was run on AWS mS.xlarge machines at 100 iterations each time. Small
clusters represent 5 machines, while large clusters represent 10 machines. The max filter was filtered on userID,
and varied to measure scalability and the cluster size was varied to measure speedup. Different regularization

parameter, lambda values, were run to seek an optimal value for convergence.

Run | Lambda | Max Filter | Input (records) | Output (factors) | Cluster Size Run Time
1 0.075 100k 3,737,128 Posorso + Qurprso | Small 1 hour, 1minute
2 0.075 100k 3,737,128 P so0srs0 T Qurrorso Large 33 minutes
3 0.075 33k 1,243,184 Pogioso T Qurroso Large 13 minutes
4 0.075 66k 2,473,519 P 100950 T Qurrorso Large 23 minutes
5 0.650 100k 3,737,128 P go0ers0 + Qirrorso Large 32 minutes
6 0.050 100k 3,737,128 P 00450 T Qurorso Large 32 minutes
7 0.100 100k 3,737,128 P s00ss0 T Qurmorso Large 32 minutes
Logs
Run 1 Run 2 Run 3 Run 4 Run S Run 6 Run 7
Outputs
Output 1 Output 2 Output 3 Output 4 Output S Output 6 Output 7

Speedup

https://github.ccs.neu.edu/cs6240-f19/Matrix_Factorization_ALS_Group26-Project/blob/master/logs/run1.txt
https://github.ccs.neu.edu/cs6240-f19/Matrix_Factorization_ALS_Group26-Project/blob/master/logs/run2.txt
https://github.ccs.neu.edu/cs6240-f19/Matrix_Factorization_ALS_Group26-Project/blob/master/logs/run3.txt
https://github.ccs.neu.edu/cs6240-f19/Matrix_Factorization_ALS_Group26-Project/blob/master/logs/run4.txt
https://github.ccs.neu.edu/cs6240-f19/Matrix_Factorization_ALS_Group26-Project/blob/master/logs/run5.txt
https://github.ccs.neu.edu/cs6240-f19/Matrix_Factorization_ALS_Group26-Project/blob/master/logs/run6.txt
https://github.ccs.neu.edu/cs6240-f19/Matrix_Factorization_ALS_Group26-Project/blob/master/logs/run7.txt
https://github.ccs.neu.edu/cs6240-f19/Matrix_Factorization_ALS_Group26-Project/blob/master/outputs/output1.txt
https://github.ccs.neu.edu/cs6240-f19/Matrix_Factorization_ALS_Group26-Project/blob/master/outputs/output2.txt
https://github.ccs.neu.edu/cs6240-f19/Matrix_Factorization_ALS_Group26-Project/blob/master/outputs/output3.txt
https://github.ccs.neu.edu/cs6240-f19/Matrix_Factorization_ALS_Group26-Project/blob/master/outputs/output4.txt
https://github.ccs.neu.edu/cs6240-f19/Matrix_Factorization_ALS_Group26-Project/blob/master/outputs/output5.txt
https://github.ccs.neu.edu/cs6240-f19/Matrix_Factorization_ALS_Group26-Project/blob/master/outputs/output6.txt
https://github.ccs.neu.edu/cs6240-f19/Matrix_Factorization_ALS_Group26-Project/blob/master/outputs/output7.txt

Cluster Size Max Filter Lambda Run Time
Small (5 workers) 100k 0.075 1 hour, Iminute
Large (10 workers) 100k 0.075 33 minutes

For speedup, two runs were recorded on a small cluster of 5 workers and a large cluster of 10 workers. Each of
these runs were given the same hyperparameters and input with a max filter of 100k. As shown in the table,
increasing from a small cluster to a large cluster resulted in a decrease in running time by approximately 50%.

Thus, the scaleup of our program is very reasonable, providing a linear decrease in running time given an

increase in workers.

Scalability
Max Filter Input (records) Lambda Run Time
33k 1,243,184 0.075 13 minutes
66k 2,473,519 0.075 23 minutes
100k 3,737,128 0.075 33 minutes

For scalability, three runs were recorded with a max filter of 33k, 66k, and 100k on a large cluster with the same
configuration. With each increase in max filter there was an observed linear increase in input record size.
Additionally a linear increase in input records resulted in an observed linear increase in running time. Thus the
scalability of our program shows a linear trend when increasing the max filter and ultimately the size of the
input.

Optimization

It is important to have the most optimal hyperparameters for ALS to converge the quickest. Our runs
experimented with various regularization parameters (lambda) to find the optimal one. As per the graph and
table below, it can be concluded that a hyperparameter of 0.050 had the quickest convergence and smallest

change in delta after 100 iterations. All runs converged around 15 iterations as shown by the red dotted line.

4 E+06

3.E+06

3.E+06

Cost vs lterations

3 2.E+06
g
g 2.E+06
<

1.E+06

5 E+05

0.E+00 '

1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Iterations
lambda: 0.05 lambda: 0.065 lambda: 0.075 =——Iambda: 0.10
Lambda | Max [Cluster Size Run Time | Delta (after 100 | Change in Delta (after
Filter iterations) 100 iterations)

0.050 100k | Large 32 minutes | 625.38 1.73%
0.650 100k | Large 32 minutes | 631.39 1.83%
0.075 100k | Large 33 minutes | 627.90 1.86%
0.100 100k | Large 32 minutes | 613.85 1.91%

Result Sample

The result output is the current Cost (calculated by the Cost Function) and Cost Delta (change in cost) per
iteration:

Iteration(96) Cost: 1330938.3228906982 Delta: 663.4889064121526

Iteration(97) Cost: 1330287.8295311453 Delta: 650.4933595529292

Iteration(98) Cost: 1329649.9319488101 Delta: 637.8975823351648

Iteration(99) Cost: 1329024.2448263355 Delta: 625.6871224746574

Iteration(100) Cost: 1328410.397023809 Delta: 613.8478025265504

Conclusions

As highlighted, ALS can be used to estimate every user-item pair efficiently to approximate a new matrix of
ghlig y p y pp

predicted ratings. Using this approach we were able to accurately generate a predicted ratings matrix for each

user-item pair which can be used to predict movies that a user may like.

The appeal of the ALS solution is in being able to solve matrix factorization for One Class Collaborative
Filtering (OC-CF) efficiently since it is hard if not impossible to solve using gradient-based method. However,
this approach is prohibitively expensive for most real-world datasets. A second (and more holistic) approach is
to use the P and Q; as features in another learning algorithm, incorporating these features with others that are

relevant to the prediction task.

A significant extension that could be later to the project is to add Block ALS, it is a method of partitioning that
sends only the appropriate user (P) or item (Q) columns to each partition, not the entire P and Q matrix.
Another possible extension would be to provide functionality that would return a rating recommendation for
any user/item combination or return a list of recommended movies a given user may like that they have not

seen.

